Groovy’s groovy-ginq
module provides a higher-level abstraction over collections.
It could perform queries against in-memory collections of objects in SQL-like style.
Also, querying XML, JSON, YAML, etc. could also be supported because they can be parsed into collections.
As GORM and jOOQ are powerful enough to support querying DB, we will cover collections first.
1. GINQ a.k.a. Groovy-Integrated Query
GINQ is a DSL for querying with SQL-like syntax, which consists of the following structure:
GQ, i.e. abbreviation for GINQ
|__ from
| |__ <data_source_alias> in <data_source>
|__ [join/innerjoin/leftjoin/rightjoin/fulljoin/crossjoin]*
| |__ <data_source_alias> in <data_source>
| |__ on <condition> ((&& | ||) <condition>)* (NOTE: `crossjoin` does not need `on` clause)
|__ [where]
| |__ <condition> ((&& | ||) <condition>)*
|__ [groupby]
| |__ <expression> [as <alias>] (, <expression> [as <alias>])*
| |__ [having]
| |__ <condition> ((&& | ||) <condition>)*
|__ [orderby]
| |__ <expression> [in (asc|desc)] (, <expression> [in (asc|desc)])*
|__ [limit]
| |__ [<offset>,] <size>
|__ select
|__ <expression> [as <alias>] (, <expression> [as <alias>])*
[] means the related clause is optional, * means zero or more times, and + means one or more times. Also, the clauses of GINQ are order sensitive,
so the order of clauses should be kept as the above structure
|
As we could see, the simplest GINQ consists of a from
clause and a select
clause, which looks like:
from n in [0, 1, 2]
select n
ONLY ONE from clause is required in GINQ. Also, GINQ supports multiple data sources through from and the related joins.
|
As a DSL, GINQ should be wrapped with the following block to be executed:
GQ { /* GINQ CODE */ }
For example,
def numbers = [0, 1, 2]
assert [0, 1, 2] == GQ {
from n in numbers
select n
}.toList()
import java.util.stream.Collectors
def numbers = [0, 1, 2]
assert '0#1#2' == GQ {
from n in numbers
select n
}.stream()
.map(e -> String.valueOf(e))
.collect(Collectors.joining('#'))
And it is strongly recommended to use def
to define the variable for the result of GINQ execution,
which is a Queryable
instance that is lazy.
def result = GQ {
/* GINQ CODE */
}
def stream = result.stream() // get the stream from GINQ result
def list = result.toList() // get the list from GINQ result
Currently GINQ can not work well when STC is enabled. |
Also, GINQ could be written in a method marked with @GQ
:
@GQ
def someGinqMethod() {
/* GINQ CODE */
}
For example,
-
Mark the
ginq
method as a GINQ method with@GQ
annotation:
@groovy.ginq.transform.GQ
def ginq(list, b, e) {
from n in list
where b < n && n < e
select n
}
assert [3, 4] == ginq([1, 2, 3, 4, 5, 6], 2, 5).toList()
-
Specify the result type as
List
:
import groovy.ginq.transform.GQ
@GQ(List)
def ginq(b, e) {
from n in [1, 2, 3, 4, 5, 6]
where b < n && n < e
select n
}
assert [3, 4] == ginq(2, 5)
GINQ supports many result types, e.g. List , Set , Collection , Iterable , Iterator , java.util.stream.Stream and array types.
|
-
Enable parallel querying:
import groovy.ginq.transform.GQ
@GQ(parallel=true)
def ginq(x) {
from n in [1, 2, 3]
where n < x
select n
}
assert [1] == ginq(2).toList()
1.1. GINQ Syntax
1.1.1. Data Source
The data source for GINQ could be specified by from
clause, which is equivalent to SQL’s FROM
.
Currently GINQ supports Iterable
, Stream
, array and GINQ result set as its data source:
Iterable
Data Source
from n in [1, 2, 3] select n
Stream
Data Source
from n in [1, 2, 3].stream() select n
Array Data Source
from n in new int[] {1, 2, 3} select n
GINQ Result Set Data Source
def vt = GQ {from m in [1, 2, 3] select m}
assert [1, 2, 3] == GQ {
from n in vt select n
}.toList()
1.1.2. Projection
The column names could be renamed with as
clause:
def result = GQ {
from n in [1, 2, 3]
select Math.pow(n, 2) as powerOfN
}
assert [[1, 1], [4, 4], [9, 9]] == result.stream().map(r -> [r[0], r.powerOfN]).toList()
The renamed column could be referenced by its new name, e.g. r.powerOfN .
Also, it could be referenced by its index, e.g. r[0]
|
assert [[1, 1], [2, 4], [3, 9]] == GQ {
from v in (
from n in [1, 2, 3]
select n, Math.pow(n, 2) as powerOfN
)
select v.n, v.powerOfN
}.toList()
select P1, P2, …, Pn is a simplified syntax of select new NamedRecord(P1, P2, …, Pn) when and only when n >= 2.
Also, NamedRecord instance will be created if as clause is used.
The values stored in the NamedRecord could be referenced by their names.
|
Construct new objects as column values:
@groovy.transform.EqualsAndHashCode
class Person {
String name
Person(String name) {
this.name = name
}
}
def persons = [new Person('Daniel'), new Person('Paul'), new Person('Eric')]
assert persons == GQ {
from n in ['Daniel', 'Paul', 'Eric']
select new Person(n)
}.toList()
Distinct
distinct
is equivalent to SQL’s DISTINCT
def result = GQ {
from n in [1, 2, 2, 3, 3, 3]
select distinct(n)
}
assert [1, 2, 3] == result.toList()
def result = GQ {
from n in [1, 2, 2, 3, 3, 3]
select distinct(n, n + 1)
}
assert [[1, 2], [2, 3], [3, 4]] == result.toList()
1.1.3. Filtering
where
is equivalent to SQL’s WHERE
from n in [0, 1, 2, 3, 4, 5]
where n > 0 && n <= 3
select n * 2
In
from n in [0, 1, 2]
where n in [1, 2]
select n
from n in [0, 1, 2]
where n in (
from m in [1, 2]
select m
)
select n
import static groovy.lang.Tuple.tuple
assert [0, 1] == GQ {
from n in [0, 1, 2]
where tuple(n, n + 1) in (
from m in [1, 2]
select m - 1, m
)
select n
}.toList()
Not In
from n in [0, 1, 2]
where n !in [1, 2]
select n
from n in [0, 1, 2]
where n !in (
from m in [1, 2]
select m
)
select n
import static groovy.lang.Tuple.tuple
assert [2] == GQ {
from n in [0, 1, 2]
where tuple(n, n + 1) !in (
from m in [1, 2]
select m - 1, m
)
select n
}.toList()
Exists
from n in [1, 2, 3]
where (
from m in [2, 3]
where m == n
select m
).exists()
select n
Not Exists
from n in [1, 2, 3]
where !(
from m in [2, 3]
where m == n
select m
).exists()
select n
1.1.4. Joining
More data sources for GINQ could be specified by join clauses.
from n1 in [1, 2, 3]
join n2 in [1, 3] on n1 == n2
select n1, n2
join is preferred over innerjoin and innerhashjoin as it has better readability,
and it is smart enough to choose the correct concrete join(i.e. innerjoin or innerhashjoin ) by its on clause.
|
from n1 in [1, 2, 3]
innerjoin n2 in [1, 3] on n1 == n2
select n1, n2
from n1 in [1, 2, 3]
leftjoin n2 in [2, 3, 4] on n1 == n2
select n1, n2
from n1 in [2, 3, 4]
rightjoin n2 in [1, 2, 3] on n1 == n2
select n1, n2
from n1 in [1, 2, 3]
fulljoin n2 in [2, 3, 4] on n1 == n2
select n1, n2
from n1 in [1, 2, 3]
crossjoin n2 in [3, 4, 5]
select n1, n2
hash join is especially efficient when data sources contain lots of objects
from n1 in [1, 2, 3]
innerhashjoin n2 in [1, 3] on n1 == n2
select n1, n2
from n1 in [1, 2, 3]
lefthashjoin n2 in [2, 3, 4] on n1 == n2
select n1, n2
from n1 in [2, 3, 4]
righthashjoin n2 in [1, 2, 3] on n1 == n2
select n1, n2
from n1 in [1, 2, 3]
fullhashjoin n2 in [2, 3, 4] on n1 == n2
select n1, n2
Only binary expressions(== , && ) are allowed in the on clause of hash join
|
1.1.5. Grouping
groupby
is equivalent to SQL’s GROUP BY
, and having
is equivalent to SQL’s HAVING
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, count(n)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
having n >= 3
select n, count(n)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
having count() < 3
select n, count()
The group columns could be renamed with as
clause:
from s in ['ab', 'ac', 'bd', 'acd', 'bcd', 'bef']
groupby s.size() as length, s[0] as firstChar
select length, firstChar, max(s)
from s in ['ab', 'ac', 'bd', 'acd', 'bcd', 'bef']
groupby s.size() as length, s[0] as firstChar
having length == 3 && firstChar == 'b'
select length, firstChar, max(s)
Aggregate Functions
GINQ provides some built-in aggregate functions:
Function | Argument Type(s) | Return Type | Description |
---|---|---|---|
count() |
java.lang.Long |
number of rows, similar to |
|
count(expression) |
any |
java.lang.Long |
number of rows for which the value of expression is not |
min(expression) |
java.lang.Comparable |
same as argument type |
minimum value of expression across all non-null values |
max(expression) |
java.lang.Comparable |
same as argument type |
maximum value of expression across all non-null values |
sum(expression) |
java.lang.Number |
java.math.BigDecimal |
sum of expression across all non-null values |
avg(expression) |
java.lang.Number |
java.math.BigDecimal |
the average (arithmetic mean) of all non-null values |
median(expression) |
java.lang.Number |
java.math.BigDecimal |
value such that the number of non-null values above and below it is the same ("middle" value, not necessarily same as average or mean) |
stdev(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical standard deviation of all non-null values |
stdevp(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical standard deviation for the population for all non-null values |
var(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical variance of all non-null values |
varp(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical variance for the population for all non-null values |
agg(expression) |
any |
any |
customizes the aggregation logic in expression and returns single value |
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, count()
from s in ['a', 'b', 'cd', 'ef']
groupby s.size() as length
select length, min(s)
from s in ['a', 'b', 'cd', 'ef']
groupby s.size() as length
select length, max(s)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, sum(n)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, avg(n)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, median(n)
from n in [1, 1, 3, 3, 6, 6, 6]
groupby n
select n, agg(_g.stream().map(r -> r.n).reduce(BigDecimal.ZERO, BigDecimal::add))
_g is an implicit variable for agg aggregate function,
it represents the grouped Queryable object and its record(e.g. r ) could reference the data source by alias(e.g. n )
|
from fruit in ['Apple', 'Apricot', 'Banana', 'Cantaloupe']
groupby fruit.substring(0, 1) as firstChar
select firstChar, agg(_g.stream().map(r -> r.fruit).toList()) as fruit_list
Also, we could apply the aggregate functions for the whole GINQ result, i.e. no groupby
clause is needed:
assert [3] == GQ {
from n in [1, 2, 3]
select max(n)
}.toList()
assert [[1, 3, 2, 2, 6, 3, 3, 6]] == GQ {
from n in [1, 2, 3]
select min(n), max(n), avg(n), median(n), sum(n), count(n), count(),
agg(_g.stream().map(r -> r.n).reduce(BigDecimal.ZERO, BigDecimal::add))
}.toList()
assert [0.816496580927726] == GQ {
from n in [1, 2, 3]
select stdev(n)
}.toList()
assert [1] == GQ {
from n in [1, 2, 3]
select stdevp(n)
}.toList()
assert [0.6666666666666667] == GQ {
from n in [1, 2, 3]
select var(n)
}.toList()
assert [1] == GQ {
from n in [1, 2, 3]
select varp(n)
}.toList()
1.1.6. Sorting
orderby
is equivalent to SQL’s ORDER BY
from n in [1, 5, 2, 6]
orderby n
select n
in asc is optional when sorting in ascending order
|
from n in [1, 5, 2, 6]
orderby n in asc
select n
from n in [1, 5, 2, 6]
orderby n in desc
select n
from s in ['a', 'b', 'ef', 'cd']
orderby s.length() in desc, s in asc
select s
from s in ['a', 'b', 'ef', 'cd']
orderby s.length() in desc, s
select s
from n in [1, null, 5, null, 2, 6]
orderby n in asc(nullslast)
select n
nullslast is equivalent to SQL’s NULLS LAST and applied by default.
nullsfirst is equivalent to SQL’s NULLS FIRST .
|
from n in [1, null, 5, null, 2, 6]
orderby n in asc(nullsfirst)
select n
from n in [1, null, 5, null, 2, 6]
orderby n in desc(nullslast)
select n
from n in [1, null, 5, null, 2, 6]
orderby n in desc(nullsfirst)
select n
1.1.7. Pagination
limit
is similar to the limit
clause of MySQL, which could specify the offset
(first argument) and size
(second argument) for paginating,
or just specify the only one argument as size
from n in [1, 2, 3, 4, 5]
limit 3
select n
from n in [1, 2, 3, 4, 5]
limit 1, 3
select n
1.1.8. Nested GINQ
Nested GINQ in from
clause
from v in (
from n in [1, 2, 3]
select n
)
select v
Nested GINQ in where
clause
from n in [0, 1, 2]
where n in (
from m in [1, 2]
select m
)
select n
from n in [0, 1, 2]
where (
from m in [1, 2]
where m == n
select m
).exists()
select n
Nested GINQ in select
clause
assert [null, 2, 3] == GQ {
from n in [1, 2, 3]
select (
from m in [2, 3, 4]
where m == n
limit 1
select m
)
}.toList()
It’s recommended to use limit 1 to restrict the count of sub-query result
because TooManyValuesException will be thrown if more than one values returned
|
We could use as
clause to name the sub-query result
assert [[1, null], [2, 2], [3, 3]] == GQ {
from n in [1, 2, 3]
select n, (
from m in [2, 3, 4]
where m == n
select m
) as sqr
}.toList()
1.1.9. Window Functions
Window can be defined by partitionby
, orderby
, rows
and range
:
over(
[partitionby <expression> (, <expression>)*]
[orderby <expression> (, <expression>)*
[rows <lower>, <upper> | range <lower>, <upper>]]
)
-
0
used as bound ofrows
andrange
clause is equivalent to SQL’sCURRENT ROW
, and negative meansPRECEDING
, positive meansFOLLOWING
-
null
used as the lower bound ofrows
andrange
clause is equivalent to SQL’sUNBOUNDED PRECEDING
-
null
used as the upper bound ofrows
andrange
clause is equivalent to SQL’sUNBOUNDED FOLLOWING
Also, GINQ provides some built-in window functions:
Function | Argument Type(s) | Return Type | Description |
---|---|---|---|
rowNumber() |
java.lang.Long |
number of the current row within its partition, counting from |
|
rank() |
java.lang.Long |
rank of the current row with gaps |
|
denseRank() |
java.lang.Long |
rank of the current row without gaps |
|
percentRank() |
java.math.BigDecimal |
relative rank of the current row: (rank - 1) / (total rows - 1) |
|
cumeDist() |
java.math.BigDecimal |
relative rank of the current row: (number of rows preceding or peer with current row) / (total rows) |
|
ntile(expression) |
java.lang.Long |
java.lang.Long |
bucket index ranging from |
lead(expression [, offset [, default]]) |
any [, java.lang.Long [, same as expression type]] |
same as expression type |
returns expression evaluated at the row that is offset rows after the current row within the partition; if there is no such row, instead return default (which must be of the same type as expression). Both offset and default are evaluated with respect to the current row. If omitted, offset defaults to |
lag(expression [, offset [, default]]) |
any [, java.lang.Long [, same as expression type]] |
same as expression type |
returns expression evaluated at the row that is offset rows before the current row within the partition; if there is no such row, instead return default (which must be of the same type as expression). Both offset and default are evaluated with respect to the current row. If omitted, offset defaults to |
firstValue(expression) |
any |
same type as expression |
returns expression evaluated at the row that is the first row of the window frame |
lastValue(expression) |
any |
same type as expression |
returns expression evaluated at the row that is the last row of the window frame |
nthValue(expression, n) |
any, java.lang.Long |
same type as expression |
returns expression evaluated at the row that is the nth row of the window frame |
count() |
java.lang.Long |
number of rows, similar to |
|
count(expression) |
any |
java.lang.Long |
number of rows for which the value of expression is not |
min(expression) |
java.lang.Comparable |
same as argument type |
minimum value of expression across all non-null values |
max(expression) |
java.lang.Comparable |
same as argument type |
maximum value of expression across all non-null values |
sum(expression) |
java.lang.Number |
java.math.BigDecimal |
sum of expression across all non-null values |
avg(expression) |
java.lang.Number |
java.math.BigDecimal |
the average (arithmetic mean) of all non-null values |
median(expression) |
java.lang.Number |
java.math.BigDecimal |
value such that the number of non-null values above and below it is the same ("middle" value, not necessarily same as average or mean) |
stdev(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical standard deviation of all non-null values |
stdevp(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical standard deviation for the population for all non-null values |
var(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical variance of all non-null values |
varp(expression) |
java.lang.Number |
java.math.BigDecimal |
the statistical variance for the population for all non-null values |
agg(expression) |
any |
any |
INCUBATING: customizes the aggregation logic in expression and returns single value |
rowNumber
assert [[2, 1, 1, 1], [1, 0, 0, 2], [null, 3, 3, 3], [3, 2, 2, 0]] == GQ {
from n in [2, 1, null, 3]
select n, (rowNumber() over(orderby n)),
(rowNumber() over(orderby n in asc)),
(rowNumber() over(orderby n in desc))
}.toList()
assert [[1, 0, 1, 2, 3], [2, 1, 2, 1, 2], [null, 3, 0, 3, 0], [3, 2, 3, 0, 1]] == GQ {
from n in [1, 2, null, 3]
select n, (rowNumber() over(orderby n in asc(nullslast))),
(rowNumber() over(orderby n in asc(nullsfirst))),
(rowNumber() over(orderby n in desc(nullslast))),
(rowNumber() over(orderby n in desc(nullsfirst)))
}.toList()
The parentheses around the window function is required. |
rank
, denseRank
, percentRank
, cumeDist
and ntile
assert [['a', 1, 1], ['b', 2, 2], ['b', 2, 2],
['c', 4, 3], ['c', 4, 3], ['d', 6, 4],
['e', 7, 5]] == GQ {
from s in ['a', 'b', 'b', 'c', 'c', 'd', 'e']
select s,
(rank() over(orderby s)),
(denseRank() over(orderby s))
}.toList()
assert [[60, 0, 0.4], [60, 0, 0.4], [80, 0.5, 0.8], [80, 0.5, 0.8], [100, 1, 1]] == GQ {
from n in [60, 60, 80, 80, 100]
select n,
(percentRank() over(orderby n)),
(cumeDist() over(orderby n))
}.toList()
assert [[1, 0], [2, 0], [3, 0],
[4, 1], [5, 1],
[6, 2], [7, 2],[8, 2],
[9, 3], [10, 3]] == GQ {
from n in 1..10
select n, (ntile(4) over(orderby n))
}.toList()
lead
and lag
assert [[2, 3], [1, 2], [3, null]] == GQ {
from n in [2, 1, 3]
select n, (lead(n) over(orderby n))
}.toList()
assert [[2, 3], [1, 2], [3, null]] == GQ {
from n in [2, 1, 3]
select n, (lead(n) over(orderby n in asc))
}.toList()
assert [['a', 'bc'], ['ab', null], ['b', 'a'], ['bc', 'ab']] == GQ {
from s in ['a', 'ab', 'b', 'bc']
select s, (lead(s) over(orderby s.length(), s in desc))
}.toList()
assert [['a', null], ['ab', null], ['b', 'a'], ['bc', 'ab']] == GQ {
from s in ['a', 'ab', 'b', 'bc']
select s, (lead(s) over(partitionby s.length() orderby s.length(), s in desc))
}.toList()
assert [[2, 1], [1, null], [3, 2]] == GQ {
from n in [2, 1, 3]
select n, (lag(n) over(orderby n))
}.toList()
assert [[2, 3], [1, 2], [3, null]] == GQ {
from n in [2, 1, 3]
select n, (lag(n) over(orderby n in desc))
}.toList()
assert [['a', null], ['b', 'a'], ['aa', null], ['bb', 'aa']] == GQ {
from s in ['a', 'b', 'aa', 'bb']
select s, (lag(s) over(partitionby s.length() orderby s))
}.toList()
assert [[2, 3, 1], [1, 2, null], [3, null, 2]] == GQ {
from n in [2, 1, 3]
select n, (lead(n) over(orderby n)), (lag(n) over(orderby n))
}.toList()
The offset can be specified other than the default offset 1
:
assert [[2, null, null], [1, 3, null], [3, null, 1]] == GQ {
from n in [2, 1, 3]
select n, (lead(n, 2) over(orderby n)), (lag(n, 2) over(orderby n))
}.toList()
The default value can be returned when the index specified by offset is out of window, e.g. 'NONE'
:
assert [[2, 'NONE', 'NONE'], [1, 3, 'NONE'], [3, 'NONE', 1]] == GQ {
from n in [2, 1, 3]
select n, (lead(n, 2, 'NONE') over(orderby n)), (lag(n, 2, 'NONE') over(orderby n))
}.toList()
firstValue
, lastValue
and nthValue
assert [[2, 1], [1, 1], [3, 2]] == GQ {
from n in [2, 1, 3]
select n, (firstValue(n) over(orderby n rows -1, 1))
}.toList()
assert [[2, 3], [1, 2], [3, 3]] == GQ {
from n in [2, 1, 3]
select n, (lastValue(n) over(orderby n rows -1, 1))
}.toList()
assert [[2, 2], [1, 1], [3, 3]] == GQ {
from n in [2, 1, 3]
select n, (firstValue(n) over(orderby n rows 0, 1))
}.toList()
assert [[2, 1], [1, null], [3, 1]] == GQ {
from n in [2, 1, 3]
select n, (firstValue(n) over(orderby n rows -2, -1))
}.toList()
assert [[2, 1], [1, null], [3, 2]] == GQ {
from n in [2, 1, 3]
select n, (lastValue(n) over(orderby n rows -2, -1))
}.toList()
assert [[2, 3], [1, 3], [3, null]] == GQ {
from n in [2, 1, 3]
select n, (lastValue(n) over(orderby n rows 1, 2))
}.toList()
assert [[2, 3], [1, 2], [3, null]] == GQ {
from n in [2, 1, 3]
select n, (firstValue(n) over(orderby n rows 1, 2))
}.toList()
assert [[2, 2], [1, 1], [3, 3]] == GQ {
from n in [2, 1, 3]
select n, (lastValue(n) over(orderby n rows -1, 0))
}.toList()
assert [[2, 1], [1, 1], [3, 1]] == GQ {
from n in [2, 1, 3]
select n, (firstValue(n) over(orderby n rows null, 1))
}.toList()
assert [[2, 3], [1, 3], [3, 3]] == GQ {
from n in [2, 1, 3]
select n, (lastValue(n) over(orderby n rows -1, null))
}.toList()
assert [['a', 'a', 'b'], ['aa', 'aa', 'bb'], ['b', 'a', 'b'], ['bb', 'aa', 'bb']] == GQ {
from s in ['a', 'aa', 'b', 'bb']
select s, (firstValue(s) over(partitionby s.length() orderby s)),
(lastValue(s) over(partitionby s.length() orderby s))
}.toList()
assert [[1, 1, 2, 3, null], [2, 1, 2, 3, null], [3, 1, 2, 3, null]] == GQ {
from n in 1..3
select n, (nthValue(n, 0) over(orderby n)),
(nthValue(n, 1) over(orderby n)),
(nthValue(n, 2) over(orderby n)),
(nthValue(n, 3) over(orderby n))
}.toList()
min
, max
, count
, sum
, avg
, median
, stdev
, stdevp
, var
,varp
and agg
assert [['a', 'a', 'b'], ['b', 'a', 'b'], ['aa', 'aa', 'bb'], ['bb', 'aa', 'bb']] == GQ {
from s in ['a', 'b', 'aa', 'bb']
select s, (min(s) over(partitionby s.length())), (max(s) over(partitionby s.length()))
}.toList()
assert [[1, 2, 2, 2, 1, 1], [1, 2, 2, 2, 1, 1],
[2, 2, 2, 4, 2, 2], [2, 2, 2, 4, 2, 2],
[3, 2, 2, 6, 3, 3], [3, 2, 2, 6, 3, 3]] == GQ {
from n in [1, 1, 2, 2, 3, 3]
select n, (count() over(partitionby n)),
(count(n) over(partitionby n)),
(sum(n) over(partitionby n)),
(avg(n) over(partitionby n)),
(median(n) over(partitionby n))
}.toList()
assert [[2, 6, 3, 1, 3, 4], [1, 6, 3, 1, 3, 4],
[3, 6, 3, 1, 3, 4], [null, 6, 3, 1, 3, 4]] == GQ {
from n in [2, 1, 3, null]
select n, (sum(n) over()),
(max(n) over()),
(min(n) over()),
(count(n) over()),
(count() over())
}.toList()
assert [[1, 1, 1], [2, 2, 3], [5, 2, 10], [5, 2, 10]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n range -2, 0)),
(sum(n) over(orderby n range -2, 0))
}.toList()
assert [[1, 2, 3], [2, 1, 2], [5, 2, 10], [5, 2, 10]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n range 0, 1)),
(sum(n) over(orderby n range 0, 1))
}.toList()
assert [[1, 2, 3], [2, 2, 3], [5, 2, 10], [5, 2, 10]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n range -1, 1)),
(sum(n) over(orderby n range -1, 1))
}.toList()
assert [[1, 1, 2], [2, 0, 0], [5, 0, 0], [5, 0, 0]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n in desc range 1, 2)),
(sum(n) over(orderby n in desc range 1, 2))
}.toList()
assert [[1, 0, 0], [2, 1, 1], [5, 0, 0], [5, 0, 0]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n in desc range -2, -1)),
(sum(n) over(orderby n in desc range -2, -1))
}.toList()
assert [[1, 3, 12], [2, 2, 10], [5, 0, 0], [5, 0, 0]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n range 1, null)),
(sum(n) over(orderby n range 1, null))
}.toList()
assert [[1, 2, 3], [2, 2, 3], [5, 4, 13], [5, 4, 13]] == GQ {
from n in [1, 2, 5, 5]
select n, (count() over(orderby n range null, 1)),
(sum(n) over(orderby n range null, 1))
}.toList()
assert [[1, 0.816496580927726],
[2, 0.816496580927726],
[3, 0.816496580927726]] == GQ {
from n in [1, 2, 3]
select n, (stdev(n) over())
}.toList()
assert [[1, 1], [2, 1], [3, 1]] == GQ {
from n in [1, 2, 3]
select n, (stdevp(n) over())
}.toList()
assert [[1, 0.6666666666666667],
[2, 0.6666666666666667],
[3, 0.6666666666666667]] == GQ {
from n in [1, 2, 3]
select n, (var(n) over())
}.toList()
assert [[1, 1], [2, 1], [3, 1]] == GQ {
from n in [1, 2, 3]
select n, (varp(n) over())
}.toList()
assert [[1, 4], [2, 2], [3, 4]] == GQ {
from n in [1, 2, 3]
select n,
(agg(_g.stream().map(r -> r.n).reduce(BigDecimal.ZERO, BigDecimal::add)) over(partitionby n % 2))
}.toList()
1.2. GINQ Tips
1.2.1. Row Number
_rn
is the implicit variable representing row number for each record in the result set. It starts with 0
from n in [1, 2, 3]
select _rn, n
1.2.2. List Comprehension
List comprehension is an elegant way to define and create lists based on existing lists:
assert [4, 16, 36, 64, 100] == GQ {from n in 1..<11 where n % 2 == 0 select n ** 2}.toList()
assert [4, 16, 36, 64, 100] == GQ {from n in 1..<11 where n % 2 == 0 select n ** 2} as List
assert [4, 16, 36, 64, 100] == GQL {from n in 1..<11 where n % 2 == 0 select n ** 2}
GQL {…} is the abbreviation of GQ {…}.toList()
|
GINQ could be used as list comprehension in the loops directly:
def result = []
for (def x : GQ {from n in 1..<11 where n % 2 == 0 select n ** 2}) {
result << x
}
assert [4, 16, 36, 64, 100] == result
1.2.3. Query & Update
This is like update
statement in SQL
import groovy.transform.*
@TupleConstructor
@EqualsAndHashCode
@ToString
class Person {
String name
String nickname
}
def linda = new Person('Linda', null)
def david = new Person('David', null)
def persons = [new Person('Daniel', 'ShanFengXiaoZi'), linda, david]
def result = GQ {
from p in persons
where p.nickname == null
select p
}.stream()
.peek(p -> { p.nickname = 'Unknown' }) // update `nickname`
.toList()
def expected = [new Person('Linda', 'Unknown'), new Person('David', 'Unknown')]
assert expected == result
assert ['Unknown', 'Unknown'] == [linda, david]*.nickname // ensure the original objects are updated
1.2.4. Alternative for with
clause
GINQ does not support with
clause for now, but we could define a temporary variable to workaround:
def v = GQ { from n in [1, 2, 3] where n < 3 select n }
def result = GQ {
from n in v
where n > 1
select n
}
assert [2] == result.toList()
1.2.5. Alternative for case-when
case-when
of SQL could be replaced with switch expression:
assert ['a', 'b', 'c', 'c'] == GQ {
from n in [1, 2, 3, 4]
select switch (n) {
case 1 -> 'a'
case 2 -> 'b'
default -> 'c'
}
}.toList()
1.2.6. Query JSON
import groovy.json.JsonSlurper
def json = new JsonSlurper().parseText('''
{
"fruits": [
{"name": "Orange", "price": 11},
{"name": "Apple", "price": 6},
{"name": "Banana", "price": 4},
{"name": "Mongo", "price": 29},
{"name": "Durian", "price": 32}
]
}
''')
def expected = [['Mongo', 29], ['Orange', 11], ['Apple', 6], ['Banana', 4]]
assert expected == GQ {
from f in json.fruits
where f.price < 32
orderby f.price in desc
select f.name, f.price
}.toList()
1.2.7. Parallel Querying
Parallel querying is especially efficient when querying big data sources. It is disabled by default, but we could enable it by hand:
assert [[1, 1], [2, 2], [3, 3]] == GQ(parallel: true) {
from n1 in 1..1000
join n2 in 1..10000 on n2 == n1
where n1 <= 3 && n2 <= 5
select n1, n2
}.toList()
As parallel querying will use a shared thread pool, the following code can release resources after all GINQ statements execution are completed, and it will wait util all tasks of threads are completed.
GQ {
shutdown
}
Once shutdown is issued, parallel querying can not work anymore.
|
The following code is equivalent to the above code, in other words, immediate
is optional:
GQ {
shutdown immediate
}
Shutdown without waiting tasks to complete:
GQ {
shutdown abort
}
1.2.8. Customize GINQ
For advanced users, you could customize GINQ behaviour by specifying your own target code generator.
For example, we could specify the qualified class name org.apache.groovy.ginq.provider.collection.GinqAstWalker
as the target code generator to generate GINQ method calls for querying collections,
which is the default behaviour of GINQ:
assert [0, 1, 2] == GQ(astWalker: 'org.apache.groovy.ginq.provider.collection.GinqAstWalker') {
from n in [0, 1, 2]
select n
}.toList()
1.2.9. Optimize GINQ
GINQ optimizer is enabled by default for better performance. It will transform the GINQ AST to achieve better execution plan. We could disable it by hand:
assert [[2, 2]] == GQ(optimize: false) {
from n1 in [1, 2, 3]
join n2 in [1, 2, 3] on n1 == n2
where n1 > 1 && n2 < 3
select n1, n2
}.toList()
1.3. GINQ Examples
1.3.1. Generate Multiplication Table
from v in (
from a in 1..9
join b in 1..9 on a <= b
select a as f, b as s, "$a * $b = ${a * b}".toString() as r
)
groupby v.s
select max(v.f == 1 ? v.r : '') as v1,
max(v.f == 2 ? v.r : '') as v2,
max(v.f == 3 ? v.r : '') as v3,
max(v.f == 4 ? v.r : '') as v4,
max(v.f == 5 ? v.r : '') as v5,
max(v.f == 6 ? v.r : '') as v6,
max(v.f == 7 ? v.r : '') as v7,
max(v.f == 8 ? v.r : '') as v8,
max(v.f == 9 ? v.r : '') as v9
1.3.2. More examples
link: the latest GINQ examples
Some examples in the above link require the latest SNAPSHOT version of Groovy to run. |